Курант, Рихард

Рихард Курант (Richard Courant, 18881972 — американский математик немецкого происхождения, педагог и научный организатор.

Биография

Рихард Курант родился 8 января 1888 г. Люблинец (Польша), в еврейской семье. В 1890-х семья часто переезжала — в Глоц (ныне Хлодзко, Польша), Бреслау (ныне Вроцлав), а затем в Берлин (1905).

Рихард поступил в университет Бреслау, но поняв, что уровень обучения там недостаточно высок, продолжил образование сначала в Цюрихском, затем в Геттингенском университетах. В Геттингене Курант стал учеником и помощником Д. Гильберта. В 1910 г. он получил степень доктора за работу «О применении принципа Дирихле к проблеме конформных отображений». В 1914 г. он был призван в армию кайзеровской Германии и принимал участие в первой мировой войне, служа на французском фронте. Демобилизовавшись в 1919 г., Курант получает назначение на профессорскую должность в университете Мюнстера. В 1920 г. он возвращается в Гёттинген.

С 1920 по 1933 г. он был профессором Геттингенского университета. После прихода нацистов к власти в Германии и разгрома Математического института в Гёттингене Куранту пришлось эмигрировать. Один год он провел в Кембридже, затем перехал в США.

С 1936 г. Курант работал профессором Нью-Йоркского университета. В Нью-Йорке ему было поручено создание специального математического института, что он весьма успешно осуществил. В 1958 г., когда Куранту было уже 70 лет, он покинул пост директора Математического института, но продолжал активное сотрудничество с ним. В 1964 г. заведение получило название Курантовский институт математических наук. В 1966 г. Курант стал иностранным членом АН СССР.

Основные научные результаты Куранта относятся к теории конформных отображений, к краевым задачам для уравнений математической физики.

Курант скончался 27 января 1972 г. в Нью-Йорке.

Сочинения

  • Über die Anwendung des Dirichletschen Prinzipes auf die Probleme der konformen Abbildung, Inaugural—Dissertation zur Erlangung der Doktorwürde der hohen philosophischen Fakultät der Georg-August Universit&aiml;t zu Göttingen, Göttingen, W. Fr. Kaestner (1910).
  • Zur Bergündung des Dirichletschen Prinzipes, K. Gesellschaft der Wissenchaften zu Göttingen. Nachrichten. Math.-Phys. Klasse, 1-7 (1910).
  • Über die Anwendung des Dirichletschen Prinzipes auf die Probleme der konformen Abbildung, Math. Ann. 71:2, 145—183.
  • Über die Methode des Dirichletschen Prinzipes, Math. Ann. 72:4, 517—550.
  • Geometrische und philosophische Untersuchungen über den Raum, Handwörterbuch der Naturwissenschaften 8, 120—123.



  • Zur Theorie der kleinen Schwingungen, Z. für Angew. Math. und Mech. 2, 278—285.
  • Bemerkung zu meiner Note «Über eine Eigenschaft der Abbildungsfunktionen bei konformer Abbildung», K. Gesellschaft der Wissenschaften zu Göttingen. Nachrichten. Math.-Phys. Klasse, 1-2.
  • Über ein konvergenzerzeugendes Prinzip in der Variationsrechmmg, K. Gesellschaft der Wissenschaften zu Göttingen. Nachrichten. Math.-Phys. Klasse, 144—150.
  • Beweis des Satzes, dass von alien homogenen Membranen gegebenen Umfanges und gegebener Spannung die kreisförmige den tiefsten Grundton besizt, Math. Z. 1:2/3, 321—328.
  • Über die Lösungen der Differentialgleichungen der Physik, I. Mitteilung, Math. Ann. 85, 280—325.
  • Über die Schwingungen eingespannter Flatten, Math. Z. 15:3/4, 195—200.
  • The least dense lattice packing of two-dimensional convex bodies, Comm. Pure and Appl. Math. 18:1/2, 339—343. (1965)
  • Introduction to calculus and analysis. Interscience, New York, vol. II (with F. John, 1974).

В переводах на русский язык:

  • Курс дифференциального и интегрального исчисления, т. 1, 4 изд., М., 1967; т. 2, 2 изд., М., 1970;
  • Что такое математика, 2 изд., М., 1967 (совм. с Г. Роббинсом);
  • Теория функций, М., 1968 (совм. с А. Гурвицем);
  • Методы математической физики, т. 2 — Уравнения с частными производными, М., 1964.
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home