Журавлёв, Юрий Иванович

Юрий Иванович Журавлёв создал новые направления в науке, такие как теория локальных алгоритмов оптимизации, алгоритмы вычисления оценок, алгебраическая теория алгоритмов. Его исследования во многих областях прикладной математики и информатики стали классическими и определяют основные направления исследований в дискретной математике, теории распознавания и прогнозирования.

Ю. И. Журавлёв создал всемирно известную научную школу в области распознавания и прогнозирования. Среди его учеников более 100 кандидатов и 26 докторов наук, в том числе 2 члена-корреспондента РАН. Многие ученики Журавлёва Ю. И. сами руководят научными школами в России и за рубежом. Ю. И. Журавлёв — заслуженный профессор МГУ им. М. В. Ломоносова.

В 1984 г. избран членом-корреспондентом АН СССР, а в 1992 г. — академиком РАН. Академик РАН (1992 г.), заслуженный профессор МГУ. Доктор физико-математических наук (1965 г.). Зам. директора ВЦ РАН по научной работе. В 1989 г. за цикл прикладных работ ему и ряду его учеников была присуждена Премия Совета Министров СССР. В 1992 г. Юрий Иванович стал академиком РАЕН, в 1993 г. — иностранным членом Испанской королевской академии. Он — член Национальной Академии наук Украины, избран в Европейскую академию наук, награжден Кавалерским крестом Ордена Почета Республики Польша.

Он избран председателем секции «Прикладная математика и информатика», заместителем академика-секретаря Отделения математических наук РАН. Он — председатель Научного Совета по комплексной проблеме «Кибернетика» РАН (с 1998), создатель и главный редактор Международного научного журнала «Pattern Recognition and Image Analysis», председатель Экспертного Совета по присуждению ученых степеней и званий в области управления, вычислительной техники и информатики ВАК России. Награжден 8-ю орденами и медалями СССР и России.

Область научных интересов: математическая кибернетика и теоретическая информатика; дискретный анализ; теория локальных алгоритмов обработки информации; разработка математических методов принятия решений на основе неполной, противоречивой, разнородной информации; методы прогнозирования и распознавания

Биография

Юрий Иванович Журавлёв родился 14 января 1935 г. в Воронеже. В 1952 г. он окончил мужскую среднюю школу города Фрунзе Киргизской ССР и поступил на мехмат МГУ им. М. В. Ломоносова.

Уже в 1953 г. Юрий Иванович выполнил свою первую серьезную научную работу по проблеме минимизации не всюду определенных булевых функций (эта работа была опубликована в «Трудах МИАН» и за нее в 1955 г. была присуждена 1-я премия на Всесоюзном конкурсе студенческих научных работ).

Решение проблемы поиска слов в конечном множестве с учетом особенностей его строения стало дипломной работой Юрия Ивановича, после защиты которой в 1957 г. он поступил в аспирантуру МГУ на кафедру академика С. Л. Соболева.

Работая над практической задачей тестирования широкого класса технических устройств, Журавлёв создал специальный математический подход, который впоследствии породил большое число исследований многих отечественных и зарубежных ученых.

При изучении проблемы локальности в дискретных задачах, введя в рассмотрение задачи минимизации булевых функций исходно топологическое понятие окрестности, он получил ряд классических результатов, в частности — доказал теорему о локальной неразрешимости проблемы построения минимальной д.н.ф. Эти результаты составили его кандидатскую диссертацию, защищенную в конце 1959 г. В 1959 г. Юрий Иванович переехал в только что созданный Новосибирский Академгородок, где начал свою научную карьеру младшим научным сотрудником, став в 1961 г. заведующим отделом и в 1966 г. заместителем директора по научной работе в Институте математики. Одновременно он преподавал на кафедре алгебры и математической логики Новосибирского университета, которую возглавлял академик А. И. Мальцев.

В Отделе теории вычислений Института математики СО АН СССР, который создал Юрий Иванович, проводились разаработки по исследованию операций: по имитационному моделированию, нелинейному программированию, велись крупные прикладные исследования.

В этот период он получил несколько интересных результатов, среди которых необходимо отметить построение примера булевой функции с ьпатологически большимь числом тупиковых д.н.ф. (этот пример принципиально решил проблему, которой было посвящено целое направление исследований).

Самый же главный результат этого периода -— общая теория локальных алгоритмов, в которой были объединены топологические принципы и теория алгоритмов. Эта теория стала содержанием докторской диссертации, которую Юрий Иванович защитил в 1965 году (одним из первых по специальности «Математическая кибернетика»). Оппонировали ему как специалисты по кибернетике — академик В. М. Глушков и члены-корреспонденты А. А. Ляпунов и О. Б. Лупанов, так и профессор-алгебраист А. Д. Тайманов (по просьбе академика А. И. Мальцева он провел проверку чрезвычайно технически трудных исследований свойства мажоритарности). За полученные результаты в 1966 г. Ю. И. Журавлёв (совместно с О. Б. Лупановым и членом-корреспондентом АН СССР С. В. Яблонским) был удостоен звания «Лауреат Ленинской премии» в области науки и техники.

С 1966 г. началось совершенно новое направление в его научной деятельности — решение задач классификации или распознавания образов. Первой (совместно со специалистами-геофизиками Ф. П. Кренделевым и А. Н. Дмитриевым) была решена задача анализа информации о месторождениях золота. Успешное использование для ее решения тестового алгоритма привело в дальнейшем к возникновению целого направления в распознавании, основанного на широком применении методов дискретного анализа.

Юрий Иванович ввел и исследовал ставшую классической модель алгоритмов вычисления оценок (АВО), в которой оказались объединены большинство известных на тот момент принципов и процедур распознавания. Изучению АВО с тех пор посвящены сотни научных работ, многие из которых выполнены учениками Ю. И. Журавлёва. В настоящее время АВО является весьма универсальным языком описания процедур распознавания, широко применяемым для решения прикладных задач и порождающим все новые и новые теоретические исследования.

В 1969 г. Журавлёв начал работу в Вычислительном центре АН СССР (ныне — ВЦ РАН). В ВЦ Юрий Иванович возглавил Лабораторию проблем распознавания, которая впоследствии преобразовалась в Отдел проблем распознавания и методов комбинаторного анализа и Отдел вычислительных методов прогнозирования. Отделом проблем распознавания Ю. И. Журавлёв руководит и сегодня, одновременно являясь заместителем директора ВЦ РАН по научной работе. С 1970 г. он работает профессором МФТИ.

Учениками и сотрудниками Юрия Ивановича с тех пор решено множество прикладных задач в таких областях, как медицина, геология, социальное и экономическое прогнозирование и т. д., созданы программные комплексы и системы для поддержки принятия решений, распознавания, классификации и прогнозирования. При этом основой для прикладных работ всегда оказываются глубокие фундаментальные математические исследования, проводимые как в области распознавания, так и по дискретному анализу.

В 1976—1978 гг. Юрий Иванович опубликовал цикл работ по ставшему вскоре знаменитым алгебраическому подходу к проблеме синтеза корректных алгоритмов. Эти работы определили современное состояние всей проблематики распознавания и многих смежных областей прикладной математики и информатики. Основная идея алгебраического подхода, восходящая к теории расширений Галуа, состояла в использовании для синтеза экстремальных по качеству алгоритмов алгебраических замыканий изначально эвристических моделей, то есть параметрических семейств алгоритмов. В работах этого периода Юрий Иванович на примерах линейных и полиномиальных расширений показал, что можно даже в явном виде строить экстремальные по качеству алгоритмы для решения очень широких классов плохо формализованных задач. При этом конструкции алгебраического подхода Ю. И. Журавлёвым и его учениками были обоснованы с позиций так называемой гипотезы компактности и гипотезы о вероятностной природе предметной области. Работы Юрия Ивановича этого периода, как и ранее работы по АВО, также породили поток продолжающихся и сегодня исследований, в большой степени определяющих признанное мировое лидерство научной школы Журавлёва в области математических методов распознавания.

Наряду с работой в области распознавания, Юрий Иванович в 80-х годах (совместно с А. Ю. Коганом) получил важные результаты по решению «канонически трудных» задач дискретной математики, подтвердившие в очередной раз одну из его любимых мыслей о природе сложности: даже если «почти все» задачи некоторого класса имеют сложность, практически исключающую возможность их решения, это еще далеко не означает, что нельзя эффективно решать конкретные реально встречающиеся задачи из этого класса.

Являясь выдающимся математиком, автором ряда научных направлений и результатов, Юрий Иванович всегда уделял и уделяет много времени и сил и научно-организационной деятельности. С 1989 г. Ю. И. Журавлёв — член Исполкома IAPR (Международной Ассоциации по распознаванию образов), с 1990 г. — член бюро Отделения информатики, вычислительной техники и автоматизации РАН, с 1991 г. — главный редактор международного научного журнала «Pattern Recognition and Image Processing». В 1997 г. он организовал и возглавил кафедру на факультете вычислительной математики и кибернетики МГУ им. М. В. Ломоносова, в 1998 г. стал Председателем Научного совета по комплексной проблеме «Кибернетика» при Президиуме РАН.

С 1965 г., когда он выступил на Всемирном конгрессе IFIP в Нью-Йорке, и до сегодняшнего дня Юрий Иванович регулярно читает доклады и курсы лекций за рубежом. Так, им прочитаны курсы лекций в университетах США, Франции, Финляндии, Швеции, Австрии, Польши, Болгарии, ГДР и других стран. Эта работа в существенной степени обеспечила широкое международное признание советской науки в области дискретной математики и распознавания образов.

Ссылки

  • [1] В. Л. Матросов, К. В. Рудаков. Юрий Иванович Журавлев. История информатики в России: ученые и их школы Редакторы-составители: В. Н. Захаров, Р. И. Подловченко, Я. И. Фет. — Москва: Наука, 2003. — 486 c.
  • Ю. И. Журавлев. Избранные научные труды. — М.: Магистр, 1998. — 420 с.
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home