Теорема Пифагора

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Считается, что доказана греческим математиком Пифагором, в честь которого и названа. Теорема звучит следующим образом:

Во всяком прямоугольном треугольнике площадь квадрата, построенного на гипотенузе равна сумме площадей квадратов, построенных на катетах.

Обозначив длину гипотенузы треугольника через c, а длины катетов через a и b, получаем следующее равенство:

a^2 + b^2 = c^2.\,

Таким образом, теорема Пифагора устанавливает соотношение, позволяющее определить сторону прямоугольного треугольника по двум другим. Теорема Пифагора является частным случаем теоремы косинусов, устанавливающей соотношение между сторонами произвольного треугольника.

Также верно обратное утверждение:

Для всякой тройки положительных чисел a, b и c, такой что a² + b² = c², существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Содержание

Обобщения

В случае ортогональной системы векторов {vk} имеет место равенство, также назваемое теоремой Пифагора:

\sum_{k=1}^{n} \|v_k \|^2 = \left\|\sum_{k=1}^{n} v_k \right\|^2.

Если {vk} — это проекции вектора на координатные оси, то эта формула совпадает с расстоянием Евклида — и означает, что длина вектора есть корень корень квадратный из суммы квадратов его компонентов.

Аналог этого равенства в случае бесконечной системы вектров носит название равенства Парсеваля.

История

Первоначально теорема устанавливала соотношения между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника: квадрат, построенный на гипотенузе, равновелик сумме квадратов, построенных на катетах.

См. также

Ссылки

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home