Мультиномиальное распределение

Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай независимых испытаний случайного эксперимента с несколькими возможными исходами.

Определение

Пусть X_1,\ldots, X_n - независимые одинаково распределённые случайные величины, такие, что их распределение задаётся функцией вероятности:

\mathbb{P}(X_i = j) = p_j,\; j=1,\ldots, k.

Интуитивно событие {Xi = j} означает, что испытание с номером i привело к исходу j. Пусть случайная величина Yj равна количеству испытаний, приведших к исходу j:

Y_j = \sum_{i=1}^n \mathbf{1}_{\{X_i = j\}},\; j = 1,\ldots, k.

Тогда распределение вектора \mathbf{Y} = (Y_1,\ldots,Y_k)^{\top} имеет функцию вероятности

p_{\mathbf{Y}}(\mathbf{y}) = \left\{ \begin{matrix} {n \choose {y_1 \ldots y_k}} p_1^{y_1}\ldots p_k^{y_k}, & \sum\limits_{j=1}^k y_i = n \\ 0, & \sum\limits_{j=1}^k y_i \not= n \end{matrix} \right., \quad \mathbf{y} = (y_1,\ldots, y_k)^{\top} \in \mathbb{N}^k_0,

где

{n \choose {y_1 \ldots y_k}} \equiv \frac{n!}{y_1! \ldots y_k!} - мультиномиальный коэффициент.

Вектор средних и матрица ковариации

Математическое ожидание случайной величины Yj имеет вид: \mathbb{E}[Y_j] = np_j. Диагональные элементы матрицы ковариации Σ = (σij) являются дисперсиями биномиальных случайных величин, а следовательно

\sigma_{jj}=\mathrm{D}[Y_j] = np_j(1-p_j),\; j =1,\ldots, k.

Для остальных элементов имеем

\sigma_{ij} = \mathrm{cov}(Y_i,Y_j) = -np_ip_j,\; i \not= j.

Ранг матрицы ковариации мультиномиального распределения равен k − 1.

Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Колмогорова | Коши | логнормальное | Лоренца | нормальное | равномерное | Парето | Стьюдента | Фишера | хи-квадрат | экспоненциальное | Эрланга многомерное нормальное
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home