Кривизна

В дифференциальной геометрии, кривизна́ - собирательное название ряда количественных характеристик (численных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т.д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т.д.).

Обычно кривизна определяется для каждой точки на «объекте» и выражается как значение некоторого дифференциального выражения 2-го порядка. Иногда кривизна определяется в интегральном смысле, например как мера, такие определения используют для «объектов» пониженной гладкости. Как правило, тождественное обращение в нуль кривизны во всех точках влечёт совпадение (локальное но не глобальное) изучаемого «объекта» с «плоским» объектом.

В этой статье приводятся только несколько простейших примеров определений понятия кривизны.

Кривизна кривой

Пусть γ(t) - регулярная кривая в d-мерном евклидовом пространстве, параметризованная длиной. Тогда

\kappa=|\ddot\gamma(t)|

называется кривизной кривой γ в точке p = γ(t), здесь \ddot\gamma(t) обозначает вторую производную по t. Вектор

k=\ddot\gamma(t)

называется вектором кривизны γ в точке p = γ(t0).

Для того чтобы кривая γ совпадала с некоторым отрезком прямой или со всей прямой, необходимо и достаточно, чтобы кривизна (или вектор кривизны) тождественно равнялась нулю.

Кривизна поверхности

Пусть Φ есть регулярная поверхность в трёхмерном евклидовом пространстве. Пусть p - точка Φ, Tp - касательная плоскость к Φ в точке p, n - единичная нормаль к Φ в точке p, а - πe плоскость, проходящая через n и некоторый единичный вектор e в Tp. Кривая γe , получающаяся как пересечение плоскости πe с поверхностью Φ, называется нормальным сечением поверхности Φ в точке p в направлении e. Величина

\kappa_e=k\cdot n

где \cdot обозначает скалярное произведение, а k вектор кривизны γe в точке p называется нормальной кривизной поверхности Φ в направлении e. С точностью до знака нормальная кривизна равна кривизне кривой γe.

В касательной плоскости Tp существуют два перпендикулярных направления e1 и e2 такие, что нормальную кривизну в произвольном направлении можно представить с помощью так называемой формулы Эйлера:

κe = κ1cos2α + κ2sin2α

где α - угол между e и e1, a величины κ1 и κ2 нормальные кривизны в направлениях e1 и e2, они называются главными кривизнами, а направления e1 и e2 - главными направлениями поверхности в точке p. Главные кривизны являются экстремальными значениями нормальных кривизн. Структуру нормальных кривизн в данной точке поверхности удобно графически изображать с помощью индикатрисы Дюпена.

Величина

H = κ1 + κ2

называется средней кривизной поверхности. Величина

K = κ1κ2

называется гауссовой кривизной поверхности.

Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности не изменяется при изометрических изгибаниях.

См. также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home