Соевые бобы

Соя
Glycine max
Научная классификация
Царство: Растения
Отдел: Покрытосеменные
Класс: Двудольные
Порядок: Бобовые
Семейство: Бобовые
Род: Glycine
Вид: Соя
Латинское название
Glycine max (L.) Merr.
На Викивидах есть страница по этой теме

Со́я (лат. Glycine max) — растение семейства бобовых, родиной которого является восточная Азия.

Семена сои, иногда называемые cоевыми бобами (от англ. soya bean) — широко распространённый продукт питания, известный ещё в третьем тысячелетии до н. э. Сою часто называют чудо-растением — отчасти благодаря высокому содержанию растительного белка, в среднем составляющего около 40 % от массы семени, а у отдельных сортов достигающему 48-50 %, во многом аналогичном животному, отчасти благодаря сравнительно высокой урожайности. Вследствие этого, соя так же входит в состав некоторых кормов для животных.

Культурная соя широко возделывается в Азии, Южной Европе, Северной и Южной Америке, Центральной и Южной Африке, Австралии, на островах Тихого и Индийского океанов на широтах от экватора до 55-60°.

Содержание

Доместикация и история распространения сои

Соя является одним из самых древних культурных растений. История возделывания этой культуры исчисляется, по меньшей мере, пятью тысячами лет. Рисунки сои в Китае были обнаружены на камнях, костях и черепашьих панцирях. О возделывании сои упоминается в самой ранней китайской литературе, относящейся к периоду 3-4 тысячи лет до нашей эры. Известный древний учёный Китая Мин-из писал, что основатель Китая император Ха-ди (по другим сведениям Шен-Нун (Shen-Nung)), живший около 4320 лет тому назад, учил народ заниматься посевом пяти культур: риса, пшеницы, чумизы, проса и сои. По мнению одного из крупнейших специалистов по сое в СССР В. Б. Енкена соя как культурное растение сформировалась в глубокой древности, не менее 6-7 тысяч лет тому назад.

В то же время, отсутствие остатков этого растения среди неолитических находок других культур (риса, чумизы) на территории Китая, а также полулегендарная личность императора Шен-Нуна вызвали сомнение у других учёных в точности датировки возраста культурной сои. Так Хаймовиц (Hymowitz, 1970), ссылаясь на работы китайских исследователей, сделал вывод, что существующие документированные сведения о доместикации сои в Китае относятся периоду не ранее XI века до нашей эры.

Следующей страной, где соя была введена в культуру и получила статус важного пищевого растения, стала Корея. На Японские острова первые образцы сои попали позже, в период 500 г. до н. э. — 400 г. н. э. С того времени в Японии стали формироваться местные ландрасы. Считается, что соя в Японию попала из Кореи, поскольку древние корейские государства длительное время колонизировали Японские острова. Этот тезис подтверждает полная идентичность форм сои Кореи и Японии.

Европейским учёным соя стала известна после того, как германский натуралист Э. Кемпфер посетил в 1691 г. Восток и описал сою в своей книге «Amoentitatum Exoticarum Politico-Physico-Medicarum», изданной в 1712 г. В знаменитой книге К. Линнея «Species Plantarum», изданной первым изданием в 1753 г., соя упоминается под двумя названиями — Phaseolus max Lin. и Dolychos soja Lin. Затем в 1794 г. немецкий ботаник Konrad Moench повторно открыл сою и описал её под названием Soja hispida Moench. В Европу соя проникла через Францию в 1740 г., однако возделываться там стала лишь с 1885 г. В 1790 г. соя впервые была ввезена в Англию.

Первые исследования сои в США были проведены в 1804 г. в штате Пенсильвания и в 1829 г. в штате Массачусетс. К 1890 г. большинство опытных учреждений этой страны уже ставили опыты с соей. В 1898 г. в США было завезено большое количество сортообразцов сои из Азии и Европы, после чего началась целенаправленная селекция и промышленное выращивание этой культуры. В 1907 г. площади под соей в США уже составляли около 20 тыс. га. В начале 30-х годов ХХ века площади под соей в этой стране превысили 1 млн. га.

По мнению известного дальневосточного учёного-селекционера В. А. Золотницкого (1962), первым в СССР начавшего научную селекцию сои, приоритет в исследованиях дикой и культурной сои принадлежит русским учёным и путешественникам. Первые отечественные упоминания о сое относятся к экспедиции В. Пояркова в Охотское море в 1643—1646 гг., который встретил посевы сои по среднему течению Амура у местного маньчжуро-тунгусского населения. Записки Пояркова вскоре были изданы в Голландии и стали известны в Европе почти на столетие раньше Кэмпфера. Следующее отечественное архивное упоминание об этой культуре датируется уже 1741 г. Однако практический интерес к этой культуре в России появился только после Всемирной выставки в Вене в 1873 г., где экспонировались более 20 сортов сои из Азии и Африки.

В 1873 г. русский ботаник Максимович почти в тех же местах встретил и описал сою под названием Glycine hispida Max, которое прочно укоренилось на целое столетие как в России, (затем и в СССР), так и в мире.

Первые опытные посевы в России были произведены в 1877 г. на землях Таврической и Херсонской губерний. Первые селекционные работы в России были начаты в период 1912—1918 гг. на Амурском опытном поле. Однако известные события 1917—1919 гг. в России привели к потере опытной популяции. Начало восстановления амурской жёлтой популяции сои, но уже несколько иного фенотипа относится к 1923—1924 гг. В результате непрерывного отбора на выравненность был создан первый отечественный сорт сои под названием Амурская жёлтая популяция, который возделывался в производстве до 1934 г.

По мнению селекционеров той эпохи, началом массового внедрения и распространения сои в России следует считать 1924—1927 гг. (Енкен, 1959; Золотницкий, 1962; Элентух, Ващенко, 1971). Тогда же соя стала возделываться в Краснодарском и Ставропольском краях, а также в Ростовской об-ласти.

Внутриродовая классификация сои

По последней внутриродовой классификации Палмера, Хаймовица и Нельсона (1996 г.) род Соя представлен 18 травянистыми многолетними видами (Австралийский центр происхождения) и однолетними видами (Юго-Восточный Азиатский (Китайский) центр происхождения), разделённых на 2 подрода: Glycine Willd. и Soja (Moench) F.J. Herm. Из Юго-Восточного Азиатского очага ведут начало все возделываемые сорта сои.

Глицин

Австралийские виды сои, входящие в подрод Glycine, отличаются многолетним циклом развития, широким геномным полиморфизмом, и представляют собой наиболее архаичные формы сои. Некоторые виды этой группы распространились также в Юго-Восточной Азии.

Согласно классификации Palmer et al. (1996) подрод Glycine представлен следующими 16 видами:

  • G. albicans;
  • G. arenaria;
  • G. argyrea;
  • G. canescens;
  • G. clandestina;
  • G. curvata;
  • G. cyrtoloba;
  • G. falcata;
  • G. hirticaulis;
  • G. lactovirens;
  • G. latifolia;
  • G. latrobeana;
  • G. microphylla;
  • G. pindanica;
  • G. tabacina;
  • G. tomentella.

Совсем недавно австралийскими ботаниками Пфейлом, Тиндале и Кравеном были обнаружены и описаны еще 4 новых вида многолетней сои: G. peratosa, G. rubiginosa, G. pullenii и G. aphyonota. В связи с этим весьма вероятно, что в скором будущем общепринятый список видов рода Соя увеличится до 22-х видов.

Соя

Подрод Soja состоит из двух видов: дикорастущей уссурийской сои G. soja и культурной сои G. max. Сюда же относится спорный полукультурный вид — соя изящная или тонкая Glycine gracilis Skvortzovii.

Виды сои Китайского центра происхождения, входящие в подрод Soja, и объединённые общим геномом GG, считаются эволюционно более продвинутыми из-за однолетнего цикла развития. Филогенетически наиболее архаичным видом здесь является дикорастущий вид уссурийской сои G. soja Sieb. et Zucc. (син: G. ussuriensis Reg. et Maack). Этот вид практически всеми систематиками признан прямым предком возделываемой культурной сои G. max.

Морфология сои

Стебли культурной сои от тонких до толстых, опушённые или голые. Высота стеблей от очень низких (от 15 см) до очень высоких — до 2-х и более метров.

У всех видов рода Соя, включая вид культурной сои, листья тройчатосложные, изредка встречаются 5, 7 и 9-листочковые, с опушёнными листочками и перистым жилкованием. Первый надсемядольный узел стебля имеет два простых листа (примордиальные листья). Эти первичные листья в соответствии с биогенетическим законом Мюллера-Геккеля рассматриваются как филогенетически более древние формы листьев. Общим признаком для всех видов сои является наличие слаборазвитых шиловидных прилистников в основании рахиса и прилистничков в основании отдельного листочка.

Венчик цветка фиолетовый различных оттенков и белый.

Плод сои представляет собой боб, вскрывающийся двумя створками по брюшному и спинному швам и обычно содержащий 2-3 семени. Бобы преимущественно крупные — 4-6 см длиной, как правило, устойчивые к растрескиванию. Перикарпий (створки боба) сои состоит из 3-х слоёв — экзокарпа, мезокарпа и эндокарпа. Главная часть эндокарпа — склеренхима, образующая так называемый пергаментный слой. Считается, что именно склеренхима, подсыхая и укорачиваясь, способствует растрескиванию бобов.

Основная масса семян сои овальная, различной выпуклости. Размеры семян варьируют от мелких — масса 1000 семян 100—149 г, до очень крупных (более 310 г) с преобладанием семян среднего размера — 150—199 г. Семенная оболочка плотная, нередко блестящая, которая часто оказывается практически непроницаемой для воды, образуя т. н. «твёрдые» или «твёрдокаменные» семена. Под семенной оболочкой располагается занимающий центральную и наибольшую часть семени крупный зародыш. Окраска семян преимущественно жёлтая, изредка встречаются формы с чёрными, зелёными и коричневыми семенами.

Биохимический состав сои

Основным биохимическим компонентом семян сои является белок. Среди всех возделываемых в мире сельскохозяйственных культур соя является одной из самых высокобелковых. По данным разных авторов в семенах этой культуры может накапливаться в среднем 38-42 % белка с варьированием этого показателя от 30 до 50 %.

Белки сои неоднородны по структуре и функциям. Среди них есть вещества, которые принято считать антипитательными компонентами пищи. Это ингибиторы протеолитических ферментов, лектины, уреаза, липоксигеназа и другие. Большую часть соевого белка (около 70 %) составляют запасные белки класса 7S (β-конглицинины) и 11S (глицинины), которые вполне нормально усваиваются млекопитающими. Соевая мука является самым широко используемым источником белка при создании сбалансированных кормов, однако, в процессе получения нуждается в термической обработке для инактивации антипитательных компонентов.

Ингибиторы протеаз составляют 5-10 % от общего количества белка в семенах сои. Их активность колеблется от 7 до 38 мг/г. Отличительной особенностью этих веществ является то, что, взаимодействуя с ферментами, предназначенными для расщепления белков, они образуют устойчивые комплексы, лишенные как ингибиторной, так и ферментативной активности. Результатом такой блокады является снижение усвоения белковых веществ рациона. Попадая в желудок, часть ингибиторов (30-40 %) теряет свою активность, а наиболее устойчивые достигают двенадцатиперстной кишки в активной форме и ингибируют ферменты, вырабатываемые поджелудочной железой. В результате этого поджелудочная железа вынуждена продуцировать их более интенсивно, что в конечном итоге может вызвать ее гипертрофию.

По химическому строению, свойствам и субстратной специфичности ингибиторы сои, в основном, относятся к двум семействам:

  • ингибиторы Кунитца — водорастворимые белки, с молекулярной массой 20000-25000Да, связывающих одну молекулу трипсина, со сравнительно небольшим числом дисульфидных мостиков, с изоэлектрической точкой 4,5;
  • ингибиторы Баумана-Бирк — спирторастворимые белки с молекулярной массой 6000-10000 Да и небольшим числом дисульфидных мостиков, способных ингибировать как трипсин, так и химотрипсин, с изоэлектрической точкой 4,0-4,2.

Лектины (фитогемагглютенины) представляют собой гликопротеины. Они нарушают функцию всасывания слизистой кишечника, повышают её проницаемость для бактериальных токсинов и продуктов гниения, агглютинируют эритроциты всех групп крови, вызывают задержку роста. В составе белка их от 2 до 10 %, а активность колеблется от 18 до 74 ГАЕ/мг муки. Лектины хорошо извлекаются водой и спиртом. Некоторые исследователи отмечают, что для инактивации лектинов достаточны более мягкие условия, чем для ингибиторов трипсина, а именно — обработка пропионовой кислотой или же термическое воздействие при 80-100°С в течение 15-25 мин.

Уреаза — фермент, который осуществляет гидролитическое расщепление мочевины с образованием аммиака и углекислого газа. Уровень её активности важен только для молочного животноводства при использовании сои в кормах, содержащих мочевину, так как при взаимодействии уреазы с мочевиной кормов образуется аммиак, отравляющий организм животного. В исходных семенах сои доля уреазы может достигать 6 % от количества всех белков.

Липоксигеназа — фермент, окисляющий липиды, содержащие цис-цис-диеновые единицы. Образующиеся при этом гидроперекисные радикалы окисляют каротиноиды и другие кислородмобильные компоненты, снижая тем самым пищевые достоинства сои. Кроме того, под действием липоксигеназы при длительном хранении семян, в них образуются альдегиды и кетоны (н-гексанал, н-гексанол, этилвинилкетон), которые придают сое специфический неприятный запах и вкус.

Соя является не только источником белка, но и масла, содержание которого в семенах колеблется от 16 до 27 %. В состав сырого масла входят триглицериды и липоидные вещества.

Отличительной особенностью сои является самое высокое содержание фосфолипидов по сравнению с другими культурами. В семенах сои их содержание колеблется в пределах 1,6-2,2 %. Фосфолипиды способствуют регенерации мембран, увеличивают детоксикационную способность печени, обладают антиоксидантной активностью, снижают у диабетиков потребность в инсулине, предотвращают дегенеративные изменения в нервных клетках, мышцах, укрепляют капилляры.

Триглицериды, состоящие из глицерина и жирных кислот, составляют основную часть липидов. В соевом масле содержание насыщенных жиров составляет 13-14 %, что значительно ниже, чем в животных жирах (41-66 %). В нем преобладают ненасыщенные жирные кислоты (86-87 % от общего количества).

Полиненасыщенные жирные кислоты (ПНЖК) характеризуются наибольшей биологической активностью. Незаменимой является линолевая кислота (С18:2), которая не синтезируется организмом человека и должна поступать только с пищей. Биологическая роль ПНЖК велика. Они являются предшественниками в биосинтезе гормоноподобных веществ — простагландинов, одной из многочисленных функций которых является препятствование отложению холестерина в стенках кровеносных сосудов, приводящего к образованию атеросклеротических бляшек.

Токоферолы — биологически активные вещества соевого масла. Содержание и функции отдельных фракций различны. α-токоферолы характеризуются наибольшей Е-витаминной активностью. Их содержание в масле составляет 100 мг/кг. β-, γ- и δ-токоферолы обладают антиокислительными свойствами, которые особенно сильно выражены во фракциях γ- и δ-токоферолов. Наличие самого большого количества токоферолов в соевом масле (830—1200 мг/кг) по сравнению с другими маслами (кукурузным — 910 мг/кг; подсолнечным — 490—680 мг/кг; оливковым — 172 мг/кг) обусловливает его способность в наибольшей степени повышать защитные свойства организма, замедлять старение, повышать потенцию.

Характерной особенностью сои является невысокое содержание углеводов. Углеводы в сое представлены растворимыми сахарами — глюкозой, фруктозой (моно-), сахарозой (ди-), рафинозой (три-), стахиозой (тетра-) сахарами, а также гидролизуемыми полисахаридами (крахмалом и др.) и нерастворимыми структурными полисахаридами (гемицеллюлозой, пектиновыми веществами, слизями и другими соединениями, образующими клеточные стенки). Во фракции растворимых углеводов моносахариды составляют лишь 1 %, а 99 % представлены сахарозой, рафинозой, стахиозой. В расчете на сухое вещество семени в сое содержится 1-1,6 % трисахарида рафинозы, которая состоит из молекул глюкозы, фруктозы и галактозы, а также 3-6 % тетрасахарида стахиозы, образованной молекулами глюкозы, фруктозы и двумя молекулами галактозы.

Семена сои — один из редких продуктов, содержащих изофлавоны. Они сконцентрированы в гипокотиле сои и отсутствуют в масле. К соевым изофлавонам относятся генистин (1664 мг/кг) генистеин, даидзин (581 мг/кг), даидзеин, глицитеин (338 мг/кг), куместрол (0,4 мг/кг), являющиеся термостабильными гликозидами, и которые не разрушаются при кулинарной обработке. Это биологически активные компоненты сои, которые обладают различной эстрогенной активностью. Сапонины также являются гликозидами. В соевой муке они составляют от 0,5 до 2,2 %. Сапонины придают сое горьковатый вкус и оказывают гемолитическое воздействие на красные кровяные тельца.

В состав зольных элементов семян сои входят макроэлементы (в мг на 100 г семян): калий — 1607, фосфор — 603, кальций — 348, магний — 226, сера — 214, кремний — 177, хлор — 64, натрий — 44, а также микроэлементы (в мкг на 100 г): железо — 9670, марганец — 2800, бор — 750, алюминий — 700, медь — 500, никель — 304, молибден — 99, кобальт — 31,2, йод — 8,2.

В соевом зерне содержится целый ряд витаминов (в мг на 100 г): β-каротина — 0,15-0,20, витамина Е — 17,3, пиридоксина (В6) — 0,7-1,3, ниацина (РР) — 2,1-3,5, пантотеновой кислоты (В3) — 1,3-2,23, рибофлавина (В2) — 0,22-0,38, тиамина (В1) — 0,94-1,8, холина — 270, а также (в мкг на 100 г зерна): биотина — 6,0-9,0, фолиевой кислоты — 180—200.

Соя как продукт питания

Соя — один из богатейших белком растительных продуктов питания. Это свойство позволяет использовать сою для приготовления и обогащения разных блюд, а так же в качестве основы растительных заменителей продуктов животного происхождения. Из неё производятся многочисленные т. н. соевые продукты: тофу, соевый соус, соевое молоко, соевое мясо, темпе, мисо, и другие. Кроме того, соя используется для производства соевого масла, соевой муки. Соя и соевые продукты широко используются в восточноазиатских (японской, китайской) и, особенно, вегетарианской кухне.

Экономика

Производство сои по годам (FAOSTAT)
тыс. тонн.
Страна 1985 1995 2005
США 57 128 59 174 82 820
Бразилия 18 279 25 683 50 195
Аргентина 6 500 12 133 38 300
Китай 10 512 13 511 16 900
Индия 1024 5096 6000
Парагвай 1172 2212 3513
Канада 1012 2293 2999
Боливия 83 889 1670
Индонезия 870 1680 797
Россия 290 740

Лидерами по выращиванию сои являются США, Бразилия и Аргентина.

Генетические модификации

Соя является одной из сельскохозяйственных культур, над которыми в настоящее время производятся генетические изменения. ГМ-соя входит в состав всё большего числа продуктов.

Фирма Монсанто (Monsanto, Сент-Луис, шт. Миссури) — мировой лидер поставок ГМ-сои. В 1995 году Монсанто выпустила на рынок генетически изменённую сою с новым признаком «Раундап Рэди» (Roundup Ready, или сокращённо RR). «Раундап» это торговая марка гербицида под названием глифосат, который был изобретён и выпущен на рынок Монсанто в 70-х годах. Roundup Ready растения содержат полную копию гена енолпирувилшикиматфосфат синтетазы (EPSP synthase) из почвенной бактерии Agrobacterium sp. strain CP4, перенесённую в геном сои при помощи генной пушки (Gene Gun), что делает их устойчивыми к гербициду глифосату, применяемому на плантациях для борьбы с сорными растениями. В настоящее время (на 2006 г.) RR соя выращивается на 92 % всех посевных площадей США засеянных этой культурой. ГМ-соя разрешена к импорту и употреблению в пищу в большинстве стран мира, в то время как посев и выращивание ГМ-сои разрешены далеко не везде. В России возделывание ГМ-сои, как и других ГМ-растений, запрещено.

Однако широкое внедрение трансгенных сортов сои в США не оказало существенного влияния на среднюю продуктивность этой культуры. Урожайность сои в США, несмотря на неуклонное, начиная с 1996 г. возрастание доли генетически модифицированных сортов, растёт примерно с той же скоростью что и до внедрения RR-сои. Более того, урожайность сои в европейских странах, использующих только сорта, созданные классической селекцией, практически не отличается от продуктивности сои в США. В ряде случаев отмечалось даже снижение продуктивности генетически модифицированных сортов сои по сравнению с обычными. Привлекательность RR-сои для фермеров состоит в первую очередь в том что её легче и дешевле выращивать, так как можно намного эффективнее бороться с сорняками. В последние годы стали появляться исследования[1], свидетельствующие о возможности создания генотипов сои, аналогичных некоторым трансгенным сортам, но выведенных классическими методами. Примером таких технологий является соя Vistive с пониженным содержанием линоленовой кислоты (С18:3), выведенная Монсанто методами классической генетики для того чтобы помочь пищевой индустрии в удалении из пищи вредных транс-жиров. Транс-жиры представляют собой побочный продукт, образующийся в процессе гидрогенизации растительных масел, проводимой для повышения его стабильности и изменения пластических свойств. В 90-е годы прошлого века появились указания на то что употребление в пищу продуктов содержащих транс-жиры (таких как маргарин) увеличивает риск сердечно-сосудистых заболеваний. Соевое масло получаемое из таких сортов как Vistive не нуждается в дополнительной обработке и во многих случаях способно заменить гидрогенизированные масла с высоким содержанием транс-жиров.

На территории России информация об использовании ГМ-сои в составе продуктов питания обязательно должна присутствовать на этикетке товара.

Название

Русское слово «соя» вероятнее всего было зиамствовано из европейских языков романо-германской группы, в которых она звучит как soy/soya/soja. Известный в середине ХХ века китайский учёный Сунь Син-дун (1958), ссылаясь на лингвистические работы соотечественников, полагал, что современное название «соя» восходит к китайскому слову «шу» или «су» — боб, как в II—I тысячелетиях до н. э. в Китае называли сою.

Ссылки

  1. (англ.)McBride J. High-tech soybean from «back-to-basics» breeding. /J. McBride / 2000 / — статья на сайте Департамента сельского хозяйства США

Литература

  • Теплякова, Т.Е. Соя / Т.Е. Теплякова // В сб.: Теоретические основы селекции. Том. III. Генофонд и селекция зерновых бобовых культур (люпин, вика, соя, фасоль) / Под ред.: Б.С. Курловича и С.И. Репьева - С-Пб., ВИР, 1995 – С. 196-217.
  • Зеленцов С. В. Современное состояние систематики культурной сои Glycine max (L.) Merrill. / С. В. Зеленцов, А. В. Кочегура/ Масличные Культуры. Науч.-техн. бюллетень ВНИИМК. — вып. 1 (134). — Краснодар. — 2006. — С. 34-48.
  • Енкен В. Б. Соя. /В. Б. Енкен / М. Гос. изд-во с.-х. лит-ры. 1959. — 653 с.
  • Корсаков Н. И. Соя /Н. И. Корсаков, Ю. П. Мякушко / Л.: ВНИИ растениеводства, 1975. — 160 с.
  • Похлёбкин В. В. «История и свойства сои».
  • Петибская В. С. Соя: качество, использование, производство. / В. С. Петибская, В. Ф. Баранов, А. В. Кочегура, С. В. Зеленцов / М.: Аграрная наука. 2001, — 64 с.
  • Сунь Син-дун. Соя. /Син-дун Сунь/ М.: Сельхозгиз. — 1958. — 248 с.
  • Hymowitz T. On the domestication of the soybean. /T. Hymowitz/ Economic Botany. — 1970. — Vol. 24. — №. 4. — P. 408—421.
  • Palmer R.G. List of the genus Glycine Willd. / R.G. Palmer, T. Hymowitz, R.L. Nelson /New York, 1996. — P. 10-13.



Зерновые культуры
Хлебные культуры:
Кукуруза | Овёс | Пшеница | Рожь | Сорго | Тритикале | Ячмень
Зерно-бобовые культуры:
Боб садовый | Горох | Фасоль | Люпин | Нут | Соя | Чина | Чечевица


Масличные культуры
Арахис | Горчица | Конопля | Кунжут | Лён масличный | Ляллеманция | Маслина | Перилла | Подсолнечник | Рапс | Рыжик | Сафлор | Соя | Хлопчатник
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home