Изоморфизм в кристаллах

Эту статью следует викифицировать.
Пожалуйста, оформите её согласно общим правилам и указаниям.

Изоморфизмом в кристаллохимии называют два несколько разных явления:

Изоструктурными называются вещества с одинаковой кристаллической структурой. Изоморфными — те изоструктурные вещества, в которые состоят из химически схожих компонентов. Это близость стриктуры и формы кристаллов различного (но родственного) химического состава. В этом смысле изоструктурными можно назвать NaCl, MgO и FeN, а изоморфными MgO и FeO. Изоморфизм структур вместе с другими важнейшими категориями кристаллохимии: полиморфизмом, морфотропией и структурной гомологией является важнейшим свойством кристаллических решеток.

С другой стороны, термином «изоморфизм» обозначается явление взаимозамещения атомов и иных структурных единиц в кристаллических фазах переменного состава. Такие вещества также называют изоморфными смесями или твердыми растворами. В этом смысле понятие изоморфизма употребляется гораздо чаще.

Содержание

Типы изоморфных растворов

Растворы замещения — один из наиболее распространенных типов соединений переменного состава. Такие соединения имеют фазовые диаграммы следующего вида.

Изоморфизм с заполнением пространства происходит, когда кроме замещающегося атома в позицию входят дополнительные атомы, располагающиеся в дополнительных позициях решетки.

Растворы внедрения (твердые растворы второго рода) это растворы, в которых атомы примеси не замещают атомы минерала хозяина, а располагаются в промежутках между ними. Растворяющиеся атомы входят в промежутки между атомами матрицы, статистически заселяя новую не занятую ранее позицию. Иногда атомы матрицы называют узлами и тогда говорят, что примесь входит в междоузлия. Растворимость по типу внедрения обычно не велика — порядка нескольких процентов и лиш в редких случаях достигает 10 %. В растворах замещения необходимое условие — схожий характер связи с различных компонентах. В растворах внедрения тип связи может быть совершенно иным.

Встречается в тех случаях, когда размеры атомов обоих компонентов значительно различаются. Он особенно характерен для систем металл — неметалл, причем размер атома неметалла значительно меньше, чем размер атома металла. Наименьшие атомы будут у следующих элементов: H (0,46), N (0,71), C (0,77). Они часто образуют с металлами твердые растворы второго рода, носящие названия гидридов, нитридов и карбидов. Многие из них являются тугоплавкими твердыми сплавами, и широко применяются в промышленности.

Классический пример раствора внедрения — аустенит. Это раствор углерода в г-модификации железа. В качестве растворов внедрения можно рассматривать силикаты с полостями и каналами, в которые входит переменное количество различных ионов. Например в берилле в каналы могут входить ионы и вода.

Другой замечательный пример раствора включения: образование гидратов некоторых металлов в особенности палладия. Палладий может растворять огромное количество водорода, в несколько раз превышающее его объем. водород отдает свой электрон металлу и он обобществляется. Лишенный электрона водород превращается в исключительно мелкий ион, который распределяется по межузлиям паладиевой решетки, не искажая её.

Растворы вычитания — Это фазы переменного состава, в которых при наличии устойчивой решетки одного из компонентов, содержание другого компонента варьирует, так как он замещается вакансиями. Такие структуры называют дефектными или дефицитными.

В качестве примера фазы вычитания можно привести пирротин, в котором наблюдается нестихиометричное соотношение железа и серы.

Термодинамика изоморфизма

Зависимость изоморфизма от термодинамических параметров: твердые растворы в зависимости от температуры и давления. Изоморфная емкость структуры: частичный и полный изоморфизм. Изоморфная емкость структуры. Причина ограниченности изоморфизма

Современная термодинамика трактует способность соединений образовывать твердые растворы с общих позиций минимума свободной энергии.

Судьба минерала определяется тем, выгодно ли энергетически его существование в виде чистых cоединений, или же, напротив, выигрыш в свободной энергии обеспечивается его нахождением в форме твердого раствора. Конкретный выбор зависит от конкуренции двух основных факторов противоположной направленности: 1) затраты энергии на деформацию кристаллической структуры при нарушении ее идеальности в результате появления в регулярных позициях структуры атомов иного размера (безразлично — более крупных или более мелких) и/или иного заряда (валентности) и 2) выигрыша энергии за счет роста конфигурационной энтропии при увеличении беспорядка в системе [3].

Конфигурационная энтропия связана с числом вариантов случайного размещения некоторой определенной доли «своих» и «чужих» атомов в одних и тех же позициях кристаллической структуры. Чем больше число таких вариантов, тем больше значение конфигурационной энтропии S. Она может k быть рассчитана по известной формуле Больцмана S = klnW, где k — константа Больцмана, W — термодинамическая вероятность состояния системы. Для твердых растворов W — это просто число перестановок местами атомов разных сортов в заданных позициях структуры; W = 1 для чистого кристалла и всегда больше единицы для смешанного. Ясно, что число таких перестановок зависит от состава системы, в частности от числа разных типов атомов (два, три или более), причем увеличение числа компонентов ведет к росту значений конфигурационной энтропии. Существенно также, что даже появление небольшой доли примеси ведет сразу к большому росту энтропии смешения. Поэтому так трудно получить или найти в природе истинно чистые вещества.

Чем выше температура, тем шире пределы изоморфной смесимости. С точки зрения кристаллохимических законов это можно объяснить увеличением ионных радиусов и уменьшением разницы в радиусах. С точки зрения термодинамики уменьшение пределов изоморфизма происходит за счет

Законы изоморфизма

Закон Гольдшмидта. Правило диагонального изоморфизма, ограничение по электроотрицательности

Для того чтобы элементы замещали друг друга должно выполняться несколько условий. В первую очередь должно выполняться так называемое правило Гольдшмита, которое постулирует, что изоморфизм возможен только между ионами, размер которых различается не больше чем на 10-15 %. Однако этого не достаточно для изоморфного замещения атомов. Натрий и медь имеют очень близкие по размеру ионы, но почти никогда не образуют значительных изоморфных замещений. Причина этого в больой разнице электроотрицательностей этих элементов. Поэтому второе условие изоморфизма ыормулирется следующим образом: твердые растворы возможны если разница электроотрицательностей меньше 0.4

Впрочем, известны примеры, когда близкие по размеру ионы не замещают друг друга. Так, классические ионные радиусы Na и Cu практически одинаковы, около 1 A, и нет геометрических препятствий для взаимных замещений между этими ионами. В таких случаях причиной не смесимости, то есть невозможности образовать твердый раствор, является разный характер химической связи в соединениях Na и Cu, так как разность их электроотрицательностей составляет 0,9. И если в первом случае образуются чисто ионные связи, то во втором частично ковалентный характер связи становится весьма существенным. Подобны же причины несмесимости в твердом состоянии близких по раз-меру атомов Ca и Hg, Sr и Pb, K и Ag и др.

Диагональный изоморфизм

В таблице Менделеева с движением вниз по столбцам и вправо по строкам размер ионов увеличивается. соответственно на элементы, которые расположены по диагонали к друг другу действует два противоположно направленных фактора: увеличивается заряд и уменьшается радиус иона. В результате радиус иона изменяется на 6 — 10 %. такие параметры идеально подходят для гетеровалентного изоморфизма. Первым эту закономерность заметил Ферсман, и и сформулировал правило диагонального изоморфизма.

Элементы расположенные в клетках расположенных по диагонали, ниже и правее, часто гетеровалентно замещают ионы. Исключением являются элементы 6-го ряда, радиус которых благодаря лантаноидному сжатию сокращается до величин наиболее подходящих для изоморфизма.

Свойства кристаллов с изоморфными рядами постепенно меняются от одного компонента к другому. Закон Вегарда утверждает, что размер элементарной ячейки пропорционален содержанию компонентов. Аналогично правило Ретгерса утверждает, что плотность изоморфной смеси пропорциональна составу.

Упорядоченность твердых растворов

Возможно три варианта упорядоченности замещающих атомов:

1. Распределение атомов совершенно произвольно, вероятность встретить «белый» и «черный» атомы в любой точке кристаллической структуры пропорциональна относительному количеству тех и других атомов. Этот случай соответствует полной неупорядоченности.

2. Однако между этими двумя случаями можно расположить еще два промежуточных. В случае Б имеется упорядоченность в ближайших координационных сферах — упорядоченность ближнего порядка. На рисунке не найдется ни одной пары «черных» атомов, располагающихся на кратчайшем друг к ДРУГУ расстоянии а или же на расстоянии аУ2. Все имеющиеся сведения о тонком строении твердых растворов указывают на то, что именно такое расположение характеризует подавляющее большинство твердых растворов.

3. Случай В характеризуется не только ближним порядком, в нем наблюдается и дальний порядок. Однако он не достигает 100 %. Большинство интерметаллических соединений характеризуется именно такой степенью упорядоченности, причем ее часто выражают определенным процентом от идеальной упорядоченности.

4. Распределение полностью упорядоченно взаимного расположения атомов в пространстве. Практически при таком распределении примеси образуется новое соединение промежуточного состава. примером можно назвать доломит, — промежуточное соединение между магнезитом и кальцитом. Таковы структуры многих неорганических соединений.

Из сказанного ясно, что не существует резких границ между твердым раствором и соединением. Упорядоченные твердые растворы и не полностью упорядоченные соединения являются теми самыми случаями, которые обычно реализуются в природе и в лаборатории.

См также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home